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Abstract

Stress response networks frequently have a single upstream regulator that controls many

downstream genes. However, the downstream targets are often diverse, therefore it remains

unclear how their expression is specialized when under the command of a common regulator.

To address this, we focused on a stress response network where the multiple antibiotic resis-

tance activator MarA from Escherichia coli regulates diverse targets ranging from small RNAs

to efflux pumps. Using single-cell experiments and computational modeling, we showed that

each downstream gene studied has distinct activation, noise, and information transmission

properties. Critically, our results demonstrate that understanding biological context is essen-

tial; we found examples where strong activation only occurs outside physiologically relevant

ranges of MarA and others where noise is high at wild type MarA levels and decreases as

MarA reaches its physiological limit. These results demonstrate how a single regulatory pro-

tein can maintain specificity while orchestrating the response of many downstream genes.

Author Summary

Bacteria can sense and respond to stress in their environment. This process is often coor-

dinated by a master regulator that turns on or off many downstream genes, allowing the

cell to survive the stress. However, individual genes encode products that are diverse and

optimal expression for each gene may differ. Here, we focus on how expression of diverse

downstream genes is optimized by targets of the multiple antibiotic resistance activator

MarA. Using single-cell experiments and computational modeling we show that down-

stream genes process MarA signals differently, with unique activation, noise, and informa-

tion transmission properties. We find that each downstream gene’s response depends

critically on the level of the input MarA. Furthermore, by swapping parts of the regulatory

elements of genes we were able to create novel responses. This suggests that these proper-

ties can be readily tuned by evolution. Our findings show how a network with diverse

downstream genes can be used to process the same command to achieve many distinct

outputs, which work together to coordinate the response to stress.
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Introduction

Genetic networks often feature master regulators that control suites of downstream genes.

This type of architecture is particularly common in stress response; examples include Msn2

and Crz1 in Saccharomyces cerevisiae, σB in Bacillus subtillis, and the multiple antibiotic resis-

tance activator MarA in Escherichia coli [1–4]. Each of these regulators controls tens to hun-

dreds of diverse downstream targets with widely varying functional roles. For example, MarA

regulates small RNAs, metabolic enzymes, efflux pumps, and regulatory proteins [1,5]. This

diversity of gene products raises two questions: First, how is one signal from an upstream regu-

lator decoded differently by multiple downstream targets? Second, what are the potential bene-

fits and tradeoffs that define how these genes respond? To address this, we examined three key

properties: activation, transmitted noise, and transmitted information. Although the proper-

ties are linked, they can be adjusted in a variety of ways to tailor the response of individual

genes.

Activation is set by molecular details of the transcription factor and the DNA to which it

binds. The resulting transfer function is often described by the sigmoidal Hill function [6].

Here we focus on MarA, which regulates over 60 downstream targets by binding to a well-

characterized degenerate binding sequence in their promoters known as the ‘marbox’ [5,7].

Previous studies have mapped the activation properties of genes controlled by MarA, finding

that the amount of MarA needed to turn on expression varies greatly among its targets, with a

19-fold difference in the dissociation constant (Kd) between genes [1]. The majority of down-

stream genes are only weakly activated unless MarA is overexpressed far beyond physiologi-

cally relevant levels [1]. This is due to the high dissociation constants of the downstream

promoters [8], and provokes the question of why these genes are regulated by MarA at all.

Noise provides insight into why this may be the case. Recent studies at the single-cell level

suggest that although most cells only express low levels of MarA, levels are high in a small sub-

set of the population due to cell-to-cell differences in gene expression [9,10]. These single-cell

differences allow a subpopulation of cells to survive antibiotic exposure, and survivors can

recolonize after the stress has passed [9]. Therefore, noise in MarA may turn on expression of

costly downstream genes only in a small subset of the population to hedge against future

uncertainty. This role for noise in stress response is observed frequently, such as in sporulation

and competence in B. subtilis, which allow subpopulations of cells to survive periods of

extreme stress [11–13]. When a noisy input controls downstream targets that have high disso-

ciation constants, low-level fluctuations can be filtered, while larger signals are transmitted

[14,15].

The relationship between the level of the input and the ability to activate downstream genes

defines whether information is transmitted between input and output. This can be quantified

using the metric channel capacity, which is the theoretical limit of how well information can

be passed through a network (similar to the diameter of a pipe, or channel) [16,17]. Channel

capacity depends both on the bounds of possible input values for the natural system and on

the shape of the activation curve [17–19]. For instance, if the realistic range of MarA values are

constrained such that a downstream gene is only weakly activated, then the channel capacity is

low. As the range of MarA values widens, the channel capacity may either increase, if there is a

corresponding increase in downstream gene expression, or remain low, if expression does not

change, as in the case where the response is saturated. Therefore the ability to transmit infor-

mation depends on both the input distribution and where these values fall on the activation

curve.

Expression of individual downstream genes can be tailored to balance activation, noise, and

information transmission in any number of ways. For instance, certain genetic regulatory

Customized Regulation by MarA

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005310 January 6, 2017 2 / 15



elements transmit information near the channel capacity [20,21], while others lose consider-

able information due to noise or active filtering [22,23]. Therefore, gene regulation may be tai-

lored to balance these properties.

Using MarA and its downstream genes as a case study in multi-gene regulation, we investi-

gated how expression is tailored at the single-cell level. We identified two qualitative classes of

promoters: amplifying and filtering. The amplifying promoters generate diversity and have a

high channel capacity at low levels of MarA. In contrast, the filtering promoters have low noise

and only transmit information when MarA is high. These qualitative differences in promoter

classes correlate with the functional differences in the gene products they control. We created

chimeric promoters by swapping the MarA binding sequences between downstream promot-

ers from these groups and easily altered their quantitative characteristics. Therefore, this bind-

ing sequence can serve as an evolutionary target for tuning output response.

Results

We first asked how individual genes respond to MarA at the single-cell level. To do this, we trans-

formed E. coliMG1655 ΔmarRABwith a plasmid bearing an IPTG-inducible version ofmarA
transcriptionally-fused to red fluorescent protein (rfp). We cotransformed cells containing the

induciblemarA-rfp plasmid with a second plasmid containing green fluorescent protein (gfp)

linked to a promoter for a MarA-controlled downstream gene. We then simultaneously mea-

sured RFP and GFP levels in individual cells using microscopy. By adding IPTG, we increased

MarA (measured by RFP), which activated expression of the downstream promoter (measured

by GFP). IPTG induction allowed us to capture a broad range of MarA levels (S1 Fig). These data

provide single-cell resolution measurements of downstream gene expression as a function of

MarA.

Initially, we quantified expression from the promoter PmicF in response to MarA.micF
encodes a small RNA that represses the outer membrane porin OmpF, decreasing vulnerability

to a number of stressors including antibiotics and osmotic shock [24]. Previous population-

level analysis of PmicF has indicated that the promoter has a relatively low Kd, suggesting that it

should turn on with low levels of MarA [1]. Consistent with this, PmicF expression increased in

response to MarA induction and eventually saturated (Fig 1A). We eliminated the possibility

that this result was due to artificial crosstalk between the RFP and GFP channels by construct-

ing a control strain where the PmicF reporter was cotransformed with a plasmid with inducible

rfp and nomarA and observed no spurious crosstalk effects (S2 Fig).

Consistent with previous work on noise propagation [25], we noted that noise in GFP

expression changed along the PmicF activation curve. Diversity in single-cell expression is high-

est at low levels of MarA. To quantify this effect, we calculated the normalized coefficient of

variation as a measure of transmitted noise (Fig 1B). Analytically, this value is proportional to

the local slope of the activation curve [19]. In other words, transmitted noise is highest where

the Hill function is the steepest.

To investigate where on this curve physiological levels of MarA fall, we conducted experi-

ments using the PmicF reporter in two genetic backgrounds. First, we measured the lower

bound of the PmicF response using wild type E. coli MG1655. These represent the natural levels

of PmicF under unstressed conditions with basal MarA expression. Second, we measured the

upper bound of the PmicF response by using a strain we denote MarA+, where the chromo-

somal copies of both MarR binding sites are inactivated. ThemarRAB operon is induced when

repression by MarR is inhibited, therefore by inactivating these repressor binding sites this

strain expresses the maximum physiologically realistic level of MarA. Measurements from

these two strains have distinctly different levels of PmicF reporter expression (Fig 1C).

Customized Regulation by MarA
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To confirm that these bounds on the physiological levels of MarA were appropriate we also

subjected wild type cells to several chemical stresses. We first used salicylate, the canonical

inducer of themarRAB operon, which causes a conformational change in MarR that prevents

it from repressing marRAB expression [26]. Using 1 and 3 mM salicylate, we found expression

to fall within the upper and lower bounds established by the wild type and MarA+ strains.

Additionally, the quinolone ciprofloxacin can indirectly inhibit MarR by increasing intracellu-

lar copper levels [26]. Exposure to sublethal levels of ciprofloxacin (2 and 4 μg/L) also resulted

in intermediate levels of PmicF expression. Together, these results outline the biologically rele-

vant range of PmicF expression.

Although PmicF expression changes dramatically as MarA sweeps across physiologically rel-

evant values, bulk measurements of other MarA-activated genes have suggested that many

MarA-regulated genes are not strongly activated [1]. Thus, we next tested expression of PinaA,

which has a Kd ten times higher than PmicF [1]. While the exact role of inaA is unknown, it is a

pH-inducible gene involved in stress response [27]. In sharp contrast to PmicF, PinaA shows a

gradual response to MarA, which never saturates over the tested range (Fig 1D). We quantified

transmitted noise and our results show good agreement with the theoretical prediction based

Fig 1. Downstream genes micF and inaA have distinct noise and activation profiles over biologically relevant ranges of MarA. (A) Activation of

PmicF at the single-cell level using inducible MarA. Each gray dot corresponds to a single cell with data from snapshots under multiple IPTG concentrations

(S1 Fig); white dots are means with standard deviations from binned data. Purple line is a Hill function fit to the mean values within the experimentally

measured range; gray line is the function outside this range. Images show two example snapshots under low and high activation using 0 and 500 μM IPTG.

(B) Transmitted noise through PmicF. Transmitted noise is calculated from experimental data using Eq 2; error bars are the standard deviation determined

by bootstrap resampling (Methods). Solid lines are analytical solutions. (C) PmicF expression in reporter-only experiments using wild type and MarA+ genetic

backgrounds, and with salicylate and ciprofloxacin chemical stresses. (D) Single cell PinaA activation as a function of MarA. Statistics are calculated as in

(A). Note that the images show little change in cellular diversity as MarA increases. (E) Transmitted noise for PinaA. Analytical solutions and experimental

data are as in (B). (F) PinaA expression in wild type and MarA+ genetic backgrounds.

doi:10.1371/journal.pcbi.1005310.g001
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on the slope of the fitted Hill function (Fig 1E). In contrast to PmicF, PinaA noise levels remain

low across all MarA values. Paralleling the experiments with PmicF, we used the wild type and

MarA+ genetic backgrounds to establish the physiologically relevant upper and lower bounds

for PinaA expression (Fig 1F). The two distributions are noticeably closer together than in the

case of PmicF, which is expected given the gradual slope of the Hill function.

Our initial results with PmicF and PinaA reveal that even with a common upstream regulator,

there can be categorical differences in downstream gene expression. These differences include

population-level response characteristics such as the shape of the activation curve and also sin-

gle-cell level effects such as variability in gene expression. These effects are related since trans-

mitted noise depends on the slope of the activation curve.

To explore how different characteristics of downstream gene activation influence transmit-

ted noise, we used a computational model to simulate systems with different values for the dis-

sociation constant (Kd) and Hill coefficient (n). We simulated a noisy activator regulating five

downstream genes with different Kd values (Fig 2A). In addition, we included a control not

regulated by the activator. We then calculated the transmitted noise for each, and the mean

values of our stochastic simulations show excellent agreement with our analytical solutions

(Fig 2B).

Fig 2. Dissociation constant and Hill coefficient are critical for determining how different downstream genes interpret the same

input. (A) Stochastic simulation (dots) and analytical solutions (lines) for five downstream genes with a range of dissociation constants, Kd.

The control (red) does not depend on the input. Error bars are standard deviations of binned data, but are too small to be visible. (B)

Transmitted noise as a function of Kd. Dots are mean of computational results; solid lines are analytical solutions. Transmitted noise is

calculated using Eq 2; error bars are standard deviation from bootstrap resampling. (C) Stochastic simulation (dots) and analytical solutions

(lines) for five downstream genes with a range of Hill coefficients, n, and an unregulated control (red). Error bars show standard deviations of

binned data. (D) Transmitted noise as a function of n. Error bars as in (B). (E) Experimental results showing activation curves of six MarA-

regulated genes. Error bars show standard deviations of binned data. Lines show analytical solutions. (F) Transmitted noise curves for the

six downstream genes. Error bars are standard deviation from bootstrap resampling.

doi:10.1371/journal.pcbi.1005310.g002
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Given the sigmoidal shape of the Hill function, Kd alone can determine whether a promoter

filters or amplifies a given input signal. Moreover, Kd is related to the strength of binding

between the transcription factor and its associated binding site. This parameter is easily altered

by mutations in the binding site and is therefore a potential evolutionary tuning knob. Indeed,

the marbox has substantial variation among the myriad of genes regulated by MarA [8].

In contrast to Kd, altering the Hill coefficient n primarily affects the magnitude and shape

of the noise response (Fig 2C and 2D). Genes with high n values have high transmitted noise

over narrow input ranges, while lower n values correspond to lower, broader responses. We

note that other parameters, such as activation and degradation rates, can also influence trans-

mitted noise (Supplementary Information and S3 Fig). In general terms, Kd controls the acti-

vator levels where the transmitted noise is highest, while n primarily affects the magnitude of

the transmitted noise.

We next asked whether the activation and transmitted noise profiles of a diverse set of

MarA-regulated genes varied as a function of n and Kd as in our computational simulation.

We expanded our single-cell studies to include a total of six MarA-regulated promoters: PmicF

and PinaA discussed previously, and the promoters for efflux pump genes PacrAB and PtolC,

superoxide dismutase PsodA, and PmarRAB. We selected these genes based on their diverse

responses to MarA at the population level [1]. For each, we used IPTG-inducible MarA and

measured activation and transmitted noise in the downstream promoters (Fig 2E and 2F). Of

the six genes we measured, we observed a range of expression profiles that fall broadly into

two groups. First, the ‘amplifying’ group, which includes PmicF and PmarRAB, saturates over the

examined range of MarA inputs. These promoters have lower Kd values and larger n values.

For these genes, low-level fluctuations in MarA will become large fluctuations in the down-

stream gene. In contrast, the ‘filtering’ group includes PacrAB, PinaA, PsodA, and PtolC. These

genes do not saturate over the MarA range we tested and have lower n values. In this group,

low-level fluctuations in MarA are filtered in the downstream gene, attenuating both the signal

and the noise. These two classes of genes have categorically different transmitted noise profiles

(Fig 2F). The amplifying genes have high transmitted noise peaks at low levels of MarA and

drop sharply as MarA increases, while the filtering genes have low, broad transmitted noise

curves.

While the previous results illustrate the differences in activation and transmitted noise,

these findings need to be placed in the context of the biologically relevant levels of MarA. To

investigate this we quantified the channel capacity of each promoter. Channel capacity is

defined as the maximum mutual information—the potential of the input to inform the output

[28]. The channel capacity reflects the ideal distribution of inputs through a target channel for

maximizing mutual information [17]. To keep our calculations biologically grounded, we con-

strained the possible inputs by using estimated endogenous MarA levels. This is critical to our

analysis because the physiologically relevant ranges of MarA are limited, and in some cases

only span a narrow section of the downstream gene’s activation curve (Fig 1D and 1F). In

order to quantify channel capacity for a given promoter, we divided our analysis into two cases

that correspond to wild type and MarA+ levels. By mapping the distribution of GFP values that

corresponds to wild type and MarA+ through our inducible system, we were able to estimate

the MarA distribution that produced each downstream response (S4 Fig). Together, these two

distributions represent physiologically relevant estimates of unstressed and stressed MarA lev-

els (Fig 3A and 3B).

To provide intuition into the channel capacity of a promoter, we considered how MarA lev-

els that correspond to wild type and MarA+ cells affect genes with amplifying versus filtering

properties. At low levels of MarA, amplifying genes like PmicF transmit information well, pro-

portionally mapping input to output. In contrast, the filtering genes like PinaA map the same
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input to a narrow band of output (Fig 3C). The difference in width between the input and out-

put distributions in the filtering gene corresponds to information loss. In contrast, under

MarA+ conditions the channel capacity of the filtering gene PinaA increases, while the amplify-

ing gene PmicF has a lower channel capacity since the promoter saturates and high MarA values

all map to the same output (Fig 3D).

We asked how the channel capacity varied for the six MarA-regulated genes under wild

type and MarA+ conditions. We calculated the channel capacity as a function of Kd and n for

the two genetic backgrounds (Fig 3E and 3F). Using parameters derived from experimental

Fig 3. Channel capacity for downstream genes over biologically relevant ranges of MarA. (A) Histogram of the estimated MarA levels in wild

type cells (S4 Fig). (B) Estimated MarA levels in MarA+ cells. (C) Schematic showing how wild type MarA inputs map through two downstream

promoters. The gray shaded region contains the 5th to 95th percentiles of the distributions in (A). The purple line is the amplifying gene PmicF;

orange line is the filtering gene PinaA. (D) Schematic showing how MarA+ inputs map through two downstream promoters. (E) Channel capacity for

the six downstream genes under wild type MarA levels. Heat map shows the channel capacity as a function of Kd and n. Experimentally-derived Kd

and n values for the six genes are plotted. (F) Channel capacity for the six genes under MarA+ input levels.

doi:10.1371/journal.pcbi.1005310.g003
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data, we plotted the location of each of the downstream genes on the channel capacity heat

map. We found that for wild type MarA levels, downstream genes within the filtering class dis-

play lower channel capacity than those in the amplifying class (Fig 3E). As the input increases

to MarA+ levels, we observed a shift and the filtering genes increased channel capacity, while

amplifying genes decreased (Fig 3F).

Our calculations for channel capacity quantify what the maximum mutual information is

for a bounded range of MarA inputs. Calculating the actual mutual information requires pre-

cise knowledge of the MarA input distributions. To estimate this, we calculated mutual infor-

mation between the MarA distributions from the wild type and MarA+ strains and the

downstream gene expression distributions produced by these inputs (S5 Fig). Despite the low

channel capacity under wild type conditions for many downstream genes, the MarA input dis-

tribution is optimized to transmit information at near channel capacity for the filtering genes.

However, these data also suggest that the wild type MarA distribution may not be taking full

advantage of the amplifying promoters PmicF and PmarRAB, though we note that the results are

very sensitive to the input distributions (S6 Fig), which are produced here as estimates.

The amplifying or filtering characteristics of a promoter are determined by how MarA

binds. Therefore, it is likely that altering the MarA binding sequence would have a profound

effect on the activation profile of the promoter it regulates, and in turn, its transmitted noise

and channel capacity. Moreover, although we observed two general classes of promoters, it

may be possible to generate promoters with intermediate properties.

To investigate this, we created chimeric promoters by swapping the marbox sequences

between PmarRAB and PacrAB. We constructed two chimeric promoters, which we denote Pam

and Pma. In the Pam chimera we started with PacrAB and replaced its marbox with that from

PmarRAB; in the Pma chimera PmarRAB has the PacrAB marbox. We quantified the activation and

transmitted noise of these chimeric promoters as before (Fig 4A and 4B). We found that both

Fig 4. Chimeric promoters demonstrate intermediate activation, noise, and channel capacity values. (A) Chimeric promoter activation curves. Error

bars show standard deviations of binned data. Solid lines are Hill function fits. PmarRAB and PacrAB data are reproduced from Fig 2E. (B) Transmitted noise

for chimeric promoters. Error bars show standard deviation from bootstrap resampling. (C) Channel capacity with wild type MarA levels. (D) Channel

capacity with MarA+ input levels.

doi:10.1371/journal.pcbi.1005310.g004
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chimeric promoters have Kd and n parameter values that fall between the two natural promot-

ers, and the corresponding channel capacity is also intermediate as a result (Fig 4C and 4D).

This shows that activation, and the transmitted noise and information properties that depend

on it, are readily tunable through marbox mutations. This sequence could serve as an ideal tar-

get for evolutionary adaptation.

Discussion

Genetic networks where one master regulator controls multiple downstream genes can effi-

ciently respond to stress by customizing the response of individual genes based on their diverse

functions. Using the multiple antibiotic resistance activator MarA as a case study, we show

that its downstream targets are individually tailored in the way they respond to MarA and how

they transmit noise and information.

Understanding the physiological context of MarA proved to be critical; for instance, we

found downstream genes that amplified signals under only wild type levels of MarA (PmicF and

PmarRAB) and also examples that only show a response under high, non-physiological MarA

conditions (PacrAB, PinaA, PsodA, and PtolC). These results argue that studies of stress response

genes should be coupled with a concrete understanding of the appropriate cellular context. In

our experiments with MarA we determined that there were two qualitative classes of down-

stream genes, which serve to increase variability or transmit critical signals. Ultimately, a cell’s

ability to survive stress depends upon expression of multiple downstream genes in a coordi-

nate fashion. The flexibility of MarA responses could balance multiple demands on a particular

gene’s expression including cost, desired expression level, and noise. Further, the dissociation

constant Kd and Hill coefficient n, are critical in setting a gene’s response. Our work with the

chimeric promoters illustrates that these parameters are readily changed by altering the

sequence of the marbox. We note that there are two MarA homologs, SoxS and Rob, that may

play additional regulatory roles, further underscoring the need for context-dependent mea-

surements [29].

While our experiments focused on activation, the underlying analysis can be extended to

other classes of regulation. For instance, transmitted noise is proportional to the local slope of

repressors just as it is in activators. As such, this study serves as a framework for contrasting

how one gene controls many in the context of noise and information, unconstrained by the

method of regulation. In the future it will also be interesting to examine the role of feedback,

as previous research has shown that positive feedback has the potential to increase signal trans-

mission without transmitting the associated noise [30].

Throughout our experiments, we show that each of the downstream genes behave differ-

ently in wild type and MarA+ strains. These two conditions correspond to approximations for

stressed and unstressed states. Both PmarRAB and PmicF control regulatory molecules and there-

fore these amplifying genes may serve to increase diversity in unstressed conditions. As cells

shift to stressed conditions, expression of these genes saturates. This could signify the transi-

tion from a bet-hedging state, where diversity is favored, to a state where all cells consistently

express the target gene products. In contrast, the filtering genes only engage under high levels

of MarA. Efflux pumps and other gene products controlled by these promoters are often costly

to the cell and should only be expressed when needed [38].

We have demonstrated the flexibility of multi-gene regulation in stress response networks

through a collection of single-cell experiments, computational simulations, and analytical anal-

ysis. Our results show how multiple downstream genes can display customized expression

given the same input. Straightforward changes in promoter sequence can be used to change

activation, noise, and information transmission properties, allowing for a diverse set of
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possible outcomes that can be tailored to optimize expression of specific gene products. Our

findings on the plasticity and specificity of the MarA network provide insight into the role that

master regulators can play in diverse stress response networks.

Methods

Strains and plasmids

All plasmids were derived from the BioBrick library described in [31]. In order to construct

the downstream gene reporter plasmids (denoted PacrAB, PinaA, PmarRAB, PmicF, PsodA, and PtolC)

we placed the promoter from each upstream of super-folder green fluorescent protein (gfp)

(AddGene #63176). These transcriptional reporters were constructed on a plasmid containing

the kanamycin resistance marker and low-copy SC101 origin of replication (from [31]).

For the activator/reporter experiments, we cotransformed the GFP reporter plasmid with a

second plasmid containing the ampicillin resistance marker and medium-copy p15A origin of

replication (pBbA5k from [31]). This plasmid places either marA-rfp or rfp under the control

of the IPTG-inducible lacUV5 promoter. marA-rfp is a transcriptional fusion of marA and rfp.

We used three strains for experiments: wild type E. coli MG1655, and genetic variants

ΔmarRAB and MarA+. The ΔmarRAB strain is described in [9]. In MarA+, we used transver-

sion mutations that annihilate the MarR binding sites in the chromosomal copy of themar-
RAB promoter, preventing repression of the operon.

We constructed the chimeric reporter plasmids using PacrAB and PmarRAB with

marbox sequences from [7].

Further details on plasmids and strains is provided in Supplementary Information.

Single cell fluorescence microscopy

Cultures were inoculated from single colonies and grown overnight at 37˚C with 200 rpm

shaking in LB medium with 30 μg/ml kanamycin (reporter-only) or 30 μg/ml kanamycin and

100 μg/ml carbenicillin (activator/reporter). Overnight cultures were diluted 1:100 in selective

LB. For the activator/reporter experiments, we added 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, or

500 μM IPTG and grew cultures for four hours (Supplementary Information and S1 Fig). For

the reporter-only experiments, we grew cultures for two hours before adding either salicylate

(1 or 3 mM) or ciprofloxacin (2 or 4 μg/L), then grew them for an additional two hours. Wild

type and MarA+ reporter-only strains were grown for four hours without the addition of

inducers.

For microscopy images, we placed cells on 1.5% MGC low melting temperature agarose

pads [32]. We used a Nikon Instruments Ti-E microscope to image the cells at 100× magnifica-

tion. Three images were taken of each pad to ensure that at least 100 cells were imaged under

each growth condition. Custom MATLAB scripts were used to extract fluorescence data from

individual cells. For the activator/reporter experiments, fluorescence values for cells from all

IPTG levels were combined and then binned according to their RFP levels (S1 Fig).

Activation

To quantify activation of each downstream gene, we used Hill functions:

B ¼
a

b

A
Kd

� �n

1þ A
Kd

� �n

0

B
@

1

C
Aþ

c
b

ð1Þ

where A is MarA and B is the downstream gene product. α is the promoter strength, Kd is the
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dissociation constant, n is the Hill coefficient, c is the basal expression level, and β is the degra-

dation and dilution rate. The functions for calculating the normalized level of downstream

gene product (used in Fig 2) subtract the basal expression and normalize (Supplementary

Information).

Transmitted noise

We calculated transmitted noise using two independent methods in this study. First, transmit-

ted noise is calculated from experimental data as the ratio of the noise in the downstream gene

output (B) over the noise in the MarA input (A) [30]. We note that this quantity is sometimes

referred to as ‘noise amplification’.

Ztransmitted ¼

sB
mB

� �

sA
mA

� � � S ð2Þ

Noise in an individual gene is calculated as the coefficient of variation, which is the standard

deviation (σ) divided by the mean (μ) for a given gene product level [30,33]. However, we

needed to account for noise sources not coming directly from fluctuations in MarA, such as

those from intrinsic and extrinsic noise [34]. The term S is equal to the noise of the down-

stream gene without regulation by MarA, and is necessary to fit the analytical solution to the

experimentally measured transmitted noise. S does not vary as a function of MarA and is the

sum of intrinsic and extrinsic noise sources that are independent of upstream gene regulation.

Statistics were determined by bootstrap resampling of one third of the population 100 times.

Analytically, transmitted noise is equal to the local slope of the activation curve, normalized

by the values of the function about that point [19]. Mathematically, this is equal to the slope of

the logarithmic transform of the Hill function [30,35].

Ztransmitted ¼
dB
dA
�

mA

mB
¼
dðlnBÞ
dðlnAÞ

ð3Þ

We used this function to calculate the analytic solutions in all noise plots.

Fitting parameters for transmitted noise and Hill functions

Because the transmitted noise is equal to the local slope of the activation curve, Hill functions

and transmitted noise curves share the same parameters [19]. We simultaneously fit both

curves to experimental data using a differential evolution algorithm with a custom fitness func-

tion [36]. For fitness function and exact values of fitted parameters, see Supplementary

Information.

Stochastic simulation

We modeled the input A and the downstream products B by:

_A ¼ aA � bAþ IA ð4Þ

_B ¼ a

A
Kd

� �n

1þ A
Kd

� �n � bB ð5Þ

where α is the promoter strength, Kd is the dissociation constant, and n is the Hill coefficient.

In addition, αA is the production rate of A and β describes protein degradation and dilution
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for both A and B. We simulated intrinsic noise of the input protein IA using an Ornstein-

Uhlenbeck process [37]. The intrinsic noise of the input has a standard deviation of
ffiffiffi
a
p

. The

correlation time of this noise calculated as Tint/ln(2), with Tint of 5 minutes [32]. As with the

experimental data, the level of input protein (αA) was varied through a range of possible inputs

(30 log spaced values). The parameters used and details of the stochastic simulation are given

in Supplementary Information.

Channel capacity

The channel capacity (I
�

) is dependent on the relationship between input and output and is

calculated using the functions from [17,19,20,28]:

I�ðA;BÞ ¼ log2ðZÞ þ X ð6Þ

Z ¼
Z Amax

Amin

ðdB=dAÞ2

Bþ A0 � A � ðdB=dAÞ
2

" #1
2

dA ð7Þ

X is a constant that is independent of the parameters of the downstream promoters. It is intro-

duced by the small noise approximation implicit in this calculation of channel capacity. Amin

and Amax describe the minimum and maximum input values, which we determine from exper-

imental data by mapping the output from wild type and MarA+ to the data from the activator/

report experiments (S4 Fig) using the 5th to 95th percentiles from these distributions. A0 is a

scaling term for the concentration of the activator to match experimental results. For further

details see Supplementary Information.

Supporting Information

S1 Text. Supplementary materials and methods including strains, plasmids, primers, data

parsing methods, function fitting methodology, supplementary equations, and simulation

parameters.

(PDF)

S1 Fig. PmicF response to MarA activation via IPTG induction. Fluorescence data from single

cells from three microscopy images at each concentration of IPTG were combined and then

logarithmically binned along the x-axis. Gray bars indicate bin demarcations. For each of these

bins, we calculated mean and standard deviation for all cells contained within and these values

are shown in black, where the error bars are standard deviation. The points shown in black

were only calculated for bins with greater than 25 cells.

(TIF)

S2 Fig. PmicF reporter with marA-rfp and rfp control. Multiple snapshots were combined to

estimate the response of both strains to varying MarA levels as described in S1 Fig. The black

dots represent mean and standard deviation of cells within each bin, while the black lines rep-

resent best fit Hill functions. The gray lines are these functions extrapolated beyond the experi-

mental range. The control demonstrates a near zero slope, suggesting that without themarA
gene, IPTG induction does not elicit a response from PmicF.

(TIF)

S3 Fig. Computational and analytical results for downstream promoter response as a func-

tion of α/β. (A) The activation response of five different promoters with varying α/β values, in

addition to a control gene that is unregulated by the input. Dots show the mean and standard

deviation generated using a stochastic simulation, while the colored lines are the analytic
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solutions for activation over the given input range. The gray lines are the analytical solutions

outside of the stochastic simulation range. (B) Transmitted noise for the downstream genes.

The dots are transmitted noise calculated as the coefficient of variation of B over the coefficient

of variation of A. Error bars for the estimates were determined by bootstrapping. Because the

only source of noise in this simulation is transmitted noise, S = 0. The lines show the analytical

solution to the noise function given by the local slope of the activation curve.

(TIF)

S4 Fig. Estimating MarA levels in wild type and MarA+ conditions. (A) Fluorescence distri-

butions for reporter-only experiments with PmicF in both wild type and MarA+ strains. (B)

Activator/reporter data for PmicF is shown in purple. For all cells in each of the distributions in

(A), we found the cell in the PmicF activator/reporter data with the closest level of RFP. We

refer to these as the “nearest neighbors” from the activator/repressor data set and the corre-

sponding cells for the wild type and MarA+ distributions are shown in pink and teal. (C)

Using the nearest neighbors, we collected the RFP values from these cells and generated the

corresponding probability distributions. (D-E) We repeated the process above for all down-

stream genes given (D) wild type and (E) MarA+ inputs. PmarRAB samples were not included in

these estimations as MarA+ also over-expresses MarR, a repressor of marRAB, preventing it

from accurately reporting MarA levels. (F) We summed the values for all downstream report-

ers to estimate the underlying MarA levels in the wild type and MarA+ strains.

(TIF)

S5 Fig. Estimated mutual information between MarA and downstream genes. Grey bars

represent the channel capacity of the downstream promoters (values from Fig 3E and 3F). Col-

ored bars show mutual information between estimated MarA input distributions and down-

stream targets (input values estimated as shown in S4D and S4E Fig). (A) Estimated wild type

levels and (B) estimated MarA+ levels of MarA.

(TIF)

S6 Fig. Mutual information vs. bounded channel capacity. (A) Transfer function of PmicF

with grey bar indicating bounded region for channel capacity. (B) Three examples of input dis-

tributions. (C) Input distributions mapped through transfer function shown in (A). (D)

Mutual information as a fraction of channel capacity for each of the input distributions. Grey

bars are the bounded channel capacity, which are the same for all, while the colored bars are

the calculated mutual information for each of the input distributions and their mapped out-

puts.

(TIF)
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